SVEUČILIŠTE U RIJECI
POMORSKI FAKULTET U RIJECI

mr. sc. Maja Krčum

VREDNOVANJE SIMULACIJSKIH MODELJA U OPTIMIRANJU BRODSKOG ELEKTROENERGETSKOG SUSTAVA

DOKTORSKI RAD

Rijeka, srpanj 2012.
SADRŽAJ

SAŽETAK

ABSTRACT

1. **UVOD**
 1.1. Teze doktorské radnje
 1.2. Obrazloženje teme
 1.3. Cilj istraživanja
 1.4. Dosadašnja istraživanja
 1.5. Metode istraživanja
 1.6. Struktura doktorskog rada
 1.7. Očekivani znanstveni doprinos

2. **POSEBNOSTI BRODSKOG ELEKTROENERGETSKOG SUSTAVA**

 2.1. Tehnološka orijentacija
 2.1.1. Sustav brodske elektroenergetike
 2.1.2. Elektromotorni pogoni na brodu
 2.1.2.1. Elektromotorni pogoni palubnih strojeva
 2.1.2.2. Elektromotorni pogoni pomoćnih strojeva i uređaja
 2.1.2.3. Brodski poriv
 2.1.3. Sustav životnih uvjeta
 2.2. Tehnički propisi
 2.3. Autonomnost rada
 2.4. Prilagodba posade pri rukovanju i održavanju
 2.5. Faze osnivanja broda
 2.5.1. Osmišljanje - predprojektiranje
 2.5.2. Osnovni tipovi u osmišljanju
 2.5.3. Projektiranje
 2.5.4. Gradnja
2.5.5. Eksploatacijski uvjeti 44
2.5.6. Sustav pouzdanosti 44

2.6. Zaključno o posebnosti brodskog elektroenergetskega sustava 45

3. MODELI I SIMULACIJE 46

3.1. Općenito o modeliranju i simuliranju 46
3.2. Korištene metode i alati u modeliranju i simuliranju 53
 3.2.1. Umjetna inteligencija 54
 3.2.2. Eksperimentalni sustavi 55
 3.2.3. Genetski algoritam 58
 3.2.4. Agenti, višeagentni sustavi i inteligentni agenti 60

3.3. Petrijeve mreže 62
3.4. Matlab 72
3.5. Brodogradiliški simulator 74
3.6. Posebnosti modeliranja i simuliranja 75

4. ANALIZA BRODSKOG ELEKTROENERGETSKOG SUSTAVA 76

4.1. Modeliranje elektroenergetskega sustava 78
4.2. Frekvencija u brodskoj električnoj mreži 79
4.3. Sinkroni stroj 82
4.4. Asinkroni stroj 88
4.5. Simulacija 89
 4.5.1. Simulacija prihvaćanja opterećenja 90
 4.5.2. Simulacija neprihvaćanja opterećenja 92
 4.5.3. Simulacija - raspodjela aktivne snage 94
 4.5.4. Simulacija - raspodjela reaktivne snage 97

4.6. Prikaz rezultata optimizacije korištenjem genetskog algoritma 100
4.7. Matematičko modeliranje elektroenergetskega sustava 103
4.8. Zaključno o simulacijskim modelima brodskog elektroenergetskega sustava 105

5. PRIMJENJENI SIMULACIJSKI MODELI 106

5.1. Model I: sinkroni motor - turbina 106
5.2. Model II: promjena opterećenja u brodskoj električnoj mreži (I) 109
5.3. Model III: promjena opterećenja u brodskoj električnoj mreži (II) 116
5.4. Model IV: upravljanje elementima mreže I 123
5.5. Model V: upravljanje elementima električne mreže II 127
 5.5.1. Objašnjenje rekonfiguracija električne mreže - prihvaćanje opterećenja 128
 5.5.2. Rekonfiguracija brodske električne mreže - neprihvaćanje opterećenja 130
5.6. Zaključno o primjenjenoj simulacijskoj modelizaciji brodskog 136
elektroenergetskog sustava

6. VREDNOVANJE PRIMJENE SIMULACIJSKIH MODELA 137
 6.1. Bilanca električne energije 139
 6.2. Izbor napona 142
 6.3. Izbor izvora 143
 6.4. Konfiguracija sustava 145
 6.5. Elektromotorni pogoni 146
 6.6. Električna zaštita i selektivnost 148
 6.7. Uvjeti eksploatacije 150
 6.8. Održavanje 151
 6.9. Zaključno o vrednovanju simulacijskih modela u optimiranju brodskog 153
elektroenergetskog sustava
 6.10. Praktična primjena rezultata mjerenja 158
 6.11. Doprinos razvoju pravne regulative 160
 6.12. Prijedlog daljnjih istraživanja 160

7. ZAKLJUČAK 161
 POPIS LITERATURE 163
 POPIS SLIKA 169
 POPIS TABLICA 172
 POPIS POKRATAKRATICE 173
 POPIS OZNAKA 174
 ŽIVOTOPIS 176

VI
VREDNOVANJE SIMULACIJSKIH MODELA U OPTIMIRANJU BRODSKOG ELEKTROENERGETSKOG SUSTAVA

SAŽETAK

Brodski elektroenergetski sustav je znatno jednostavnije analizirati na nekom od simulatora ili odgovarajućim simulacijskim modelima prati promjene stanja jer se ne ugrožava pogonsko stanje, nema oštećenja na značajnim dijelovima postrojenja (generator), može se ići do krajnjih granica ispitivanja (kratki spoj, a da se pri tom ne ugrožavaju životi posade i sama postrojenja.

Simulacijom je omogućena kvantitativna analiza procesa koji podrazumijeva da se taj proces odvija u vremenu, uključuje slučajne veličine, koristi resurse sustava, veliki broj međusobno povezanih elemenata. Simulirajući određene procese, pokušava se odgovoriti na pitanje što ako je stroj u pogonu pokvaren, što ako poraste potreba za većom potrošnjom goriva i slično.

Za pojedine sustave korišteno je više metoda, ali teško ih je uspoređivati. U stvaranju modela bili su uključeni samo oni parametri koji su doprinosili ostvarivanju ciljeva istraživanja, dok su neki bili zanemariti ili svedeni na najmanji utjecaj kako bi model postigao lakši rješenje.

Vrednovanje simulacijskih modela zahtijevalo je stvaranje niza modela. Svaki od njih nastajao je u posebnim uvjetima, a neki su preuzeti kao gotovi i poslužili su samo kao dio stvaranja većeg broja simulacijskih modela. Veći broj uzoraka dovodi do boljih rješenja.

U radu su obavljena određena simuliranja kao i mjerenja na simulatoru. Kreiranjem novih modela dolazi se do optimiziranja brodskog elektroenergetskog sustava, predlažu se učinkovitija rješenja, pokušava se stvoriti okruženje u kojem posada može udovoljiti zahtjevima novih tehnologija, izraditi smjernice za dijagnostiku, kreirati suvremeni simulator kojim se osigurava redundandnost.

Ključne riječi: elektroenergetski sustav broda, genetski algoritam, vrednovanje simulacijskih modela.
EVALUATION OF SIMULATION MODELS DURING OPTIMIZATION OF MARINE POWER SYSTEM

ABSTRACT

It is considerably easier to analyze a marine power system on one of the simulators and to follow the state changes by the appropriate simulation model. The simulation model does not endanger operating conditions, the parts of the plant (generator) do not suffer significant damage, the test limits can be reached (short circuit), and there is no danger for the lives of the crew and the plant itself.

Simulation ensures quantitative analysis of the process, which implies that this process takes place over a period of time, that it includes random variables, and uses system resources and a large number of interrelated elements. Simulation of certain processes will provide us with answers to the questions such as: What if the machine in operation fails? What if the need for greater fuel efficiency increases? ...

For certain systems, several methods were used, but they are difficult to compare. When creating the model, only those parameters that contributed to achieving the research objectives were included. Some other parameters were either ignored or their impact reduced to minimum, so that the model could achieve easier solution.

The evaluation of simulation models required creation of a series of models. Each of them was created in special conditions. Some of them were even taken as finished and served only as one part in creation of a larger number of simulation models. Larger number of samples leads to better solutions.

This paper deals with simulations as well as measurements in the simulator. Creating new models results in optimizing the marine power system and proposing more efficient solutions, with intention to create an environment in which crew can meet the demands of new technologies, to develop guidelines for diagnosis and to create a modern simulator which provides redundancy.

Keywords: marine power system, genetic algorithm, evaluation of simulation models